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Abstract

The paper examines the use of expressions proposed by Csanady to predict the influence of the crossing trajectory and continuity
effects on the decorrelation time scales of the fluid along solid particle trajectories in horizontal and downward vertical channel flows.
The model is evaluated using data provided by a direct numerical simulation (DNS) of the carrier phase combined with a Lagrangian
simulation of discrete particle (LS). Two particle relaxation times and two values of the gravity acceleration are considered. The results
show the possibility of using Csanady’s expressions in a turbulent channel flow provided that the spatial and temporal correlations
anisotropy is included in the model. As in isotropic homogeneous turbulence, a decrease of the decorrelation time scales is found to
be more important in the directions perpendicular to the mean relative velocity.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The numerical simulation of particle-laden flows neces-
sitates the use of a dispersion model when only the aver-
aged velocity of the carrier phase is known (Simonin,
2000; Oesterlé and Zaichik, 2004). The key issue of disper-
sion models lies in building a proper stochastic process for
the prediction of the velocity of the fluid seen by a discrete
particle. In the frame of three-dimensional dispersion
model, the fluctuating velocity time increment of the fluid
seen can be expressed by means of a Langevin-type equa-
tion (Simonin, 2000; Minier and Peirano, 2001; Reeks,
2005). It is then necessary to specify its coefficients, i.e.
the drift and diffusion terms. In homogeneous isotropic
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turbulence, the drift term is the inverse of a time scale
which can be shown to represent exactly the integral time
of the fluid seen (Minier and Peirano, 2001). In non-homo-
geneous turbulence as in a channel flow, such a modelling
idea in the stochastic model can be retained, but locally in
space. In this case, the time scale, T �ij can be regarded as a
local decorrelation of the fluid velocity fluctuation along
the discrete particle path provided that the calculation of
the velocity correlation is conditioned by the initial particle
location. Whatever the properties of the turbulence, this
fluid velocity temporal decorrelation along discrete particle
path is all the more important as the fluid and particle
mean velocity differ due to an external force field (the so-
called crossing trajectory effect). In isotropic homogeneous
turbulence, various methods have been suggested to esti-
mate the diagonal time scales T �ii in terms of the particle
inertia and of the mean relative velocity between the parti-
cles and the fluid (Wang and Stock, 1993; Derevich, 2000,
2001). Nevertheless, the formulae of Csanady (1963)
remains the reference model at the moment in two-phase
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flow modelling (Sawford and Guest, 1991; Wilson, 2000;
Minier et al., 2004; Reynolds, 2004).

Csanady worked essentially on asymptotic particle dis-
persion rates in the atmosphere where the temporal and
length scales are very large. He focused on the behavior
of the space–time velocity correlation of falling particles
in the direction parallel to the mean relative velocity, noted
Vr. Neglecting the inertia effect, assuming isotropic and sta-
tionary turbulence, and using a coordinate system moving
with the mean flow, Csanady (1963) reduced this velocity
space–time correlation in a non-dimensional form which
depends on three parameters: the magnitude of the mean
relative velocity kVrk, the fluid turbulent agitation hu02i1=2

and an Eulerian length scale. All of them are associated
with the parallel direction of the mean relative velocity,
which is necessarily aligned with the gravity vector in Csan-
ady’s study. Then, he assumed that the velocity correlation
of the fluid along a heavy particle trajectory is an interpo-
lation between two limit cases. The first one is related to the
correlation of the fluid seen which tends to the fluid
Lagrangian one when the relative motion is negligible,
i.e. when kVrk=hu02i1=2 � 1. In the second case, the correla-
tion of the fluid seen tends to an Eulerian velocity correla-
tion when the relative motion is dominant, i.e.
kVrk=hu02i1=2 � 1. This result is derived under a frozen tur-
bulence hypothesis. These two asymptotic cases allow him
to suggest that in the direction parallel to the mean relative
velocity, called longitudinal direction, the lines of constant
space–time correlation for longitudinal separation and time
lag are ellipses. An exponential-decay function is then used
to describe the correlation coefficient.

For the particle dispersion in the directions perpendicu-
lar to the mean relative velocity, attention has been paid by
Csanady to reflect the continuity effect. As mentioned by
Csanady, a particularly serious consequence of the crossing
trajectory effect occurs in connection with the perpendicu-
lar directions to the mean relative velocity (called lateral
directions in its paper), i.e. the continuity effect. According
to the fluid mass balance equation, the presence of negative
loops in the shape of the lateral velocity correlation curves
of the fluid seen is necessary. In physical terms, the conti-
nuity effect causes a decrease of the decorrelation time
scales for lateral dispersion which is more important than
in the longitudinal one. In order to reproduce the negative
loop in the velocity correlation function, Csanady used a
temporal analogy with the famous isotropic relationships
between the longitudinal and lateral two-points space cor-
relation, namely f ðrÞ and gðrÞ. However, using such a type
of correlation implies the existence of only two turbulence
length scales, one longitudinal and one lateral, noted,
respectively Lf and Lg, where Lf is twice larger than Lg.
These length scales were included in Csanady’s analysis
in order to take the continuity effect into consideration.
Finally, Csanady (1963) proposed the following couple of
expressions for modelling the time scales of the fluctuating
fluid velocity seen components parallel and perpendicular
to the mean relative velocity, noted T �gk and T �g?
T �gk ¼ T L 1þ kVrkT L

Lf

� �2
" #�1=2

;

T �g? ¼ T L 1þ kVrkT L

Lg

� �2
" #�1=2

;

ð1Þ

where T L is the fluid Lagrangian integral time scale (which
is assumed to be equal to the moving Eulerian time scale
according to Csanady’s analysis in the atmosphere). The
presence of a factor 4 appears in the above expression of
T �g? if it is written in terms of Lf instead of Lg, due to the
isotropic relationship Lf ¼ 2Lg.

In the atmosphere, the use of this isotropic relation is
questionable according to Csanady. However, if we refer,
as him, to the results of the spatial correlations of Grant
(1958) in a turbulent boundary layer, or to the results of
Comte-Bellot (1965) and Kim et al. (1987), in a channel
flow, two functional forms of the correlation are predomi-
nant: an exponential-decay for the longitudinal correla-
tions and an exponential curve with negative loops for
the lateral correlations. This has lead us to consider the
heuristic approach developed by Csanady in a channel
flow, where there are fifteen different non-zero two-points
space correlations which are qualitatively similar to those
encountered in isotropic turbulence. That is why, we think
that in a non-homogeneous turbulence, it is easier to use
Csanady’s work in order to extend the prediction of the
influence of the crossing trajectory and continuity effects
on the decorrelation time scale of the fluid seen to more
complex turbulent flows than the other modelling attempts.
For example, recently, Thomas and Oesterlé (2005) in a
turbulent linear shear flow, attempted to describe precisely
the crossing trajectory effect on the decorrelation time
scales of the fluid seen. This study shows the difficulty to
theoretically obtain analytic expressions to model the
crossing trajectory effect in anisotropic turbulence.

Although the flow studied here is a non-homogeneous
turbulent channel flow, we propose in the present paper
to retain the basic lines of Csanady’s analysis, and to model
the diagonal time scales of the fluid seen using an analo-
gous functional form as in Eq. (1). It should be noted that
the decorrelation time scales considered here are not ten-
sors. The questions which are addressed in this paper
are:‘‘Is it possible to correctly model the crossing trajectory
and continuity effects using expressions based on those pro-
posed by Csanady in a turbulent complex flow ?” and if the
results are not satisfactory in non-homogeneous flows, is it
due to the functional form or is it due to a crude estimate of
the parameters appearing in these expressions ?
2. Crossing trajectory effect: extension of Csanady’s

formulae

The expressions predicting the decorrelation time scales
of the fluid seen examined here are derived from those pro-
posed by Deutsch (1992) who introduced the inertia effect



Table 1
Numerical simulation parameters. Lx, Ly and Lz are the domain dimen-
sions; Nx, Ny and Nz are the number of grid points; Dxþ, Dyþ and Dzþ are
the grid spacings in wall units. Dtþ is the time step in wall units

Horizontal flow Downward vertical flow

Res �185 �185
Lx, Ly , Lz 2:5pd, 2d, 1:5pd 2pd, 2d, 1:5pd
Nx, Ny , Nz 192, 129, 160 192, 151, 160
Dxþ, Dyþ, Dzþ 7.6, [1,4.6], 5.4 6, [0.35,5.2], 5.4
Dtþ �0.1 �0.03
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into Csanady’s theory. He assumed that, when kVrk=
hu02i1=2 � 1, the velocity correlation of the fluid seen tends
to the correlation of the fluid seen obtained in the absence
of the gravity, noted T �gðg ¼ 0Þ ¼ T �, and not to the
Lagrangian one. Hence, Deutsch (1992) proposed to link
the two limit cases by substituting T L by T � in Eq. (1).

Knowing that these expressions have been developed for
isotropic turbulence whereas the flow studied here is
strongly anisotropic, some modifications and assumptions
have to be made. The first modification is to consider the
anisotropic character of the time scales of the fluid seen
when no external force is acting on particles, T � is then
replaced by T �ij and T �g by T �gij in Eq. (1). The length scales

LðkÞij , where k denotes the direction of the separation
between the two points, are introduced instead of Lf or
Lg in order to take the anisotropy of the turbulence into
account. Moreover, the reference system in Csanady or
Deutsch analysis has been chosen so that one of its axes
is parallel to the external force (i.e. gravity force) and thus
aligned with the mean relative velocity direction. In the
present non-homogeneous flow, the mean relative velocity
vector is inclined with respect to the gravity direction which
is aligned with one of the axes of the coordinate system.
Consequently, in order to apply Csanady’s analysis what-
ever the configuration of the flow (horizontal and vertical),
only the component of the mean relative velocity which is
parallel to the gravity direction will be considered.

Under these considerations, the modified expressions
are

T �gii ¼ T �ii 1þ V r;iT �ii
LðiÞii

 !2
2
4

3
5
�1=2

;

T �gjj ¼ T �jj 1þ
V r;iT �jj

LðiÞjj

 !2
2
4

3
5
�1=2

;

ð2Þ

where the index i indicates the gravity direction whereas
j ð6¼ iÞ represents the directions perpendicular to the grav-
ity. Note that if we consider LðiÞii =LðiÞjj ¼ 2, the expressions of
Csanady are recovered, namely

T �gii ¼ T �ii 1þ V r;iT �ii
LðiÞii

 !2
2
4

3
5
�1=2

;

T �gjj ¼ T �jj 1þ 4
V r;iT �jj

LðiÞii

 !2
2
4

3
5
�1=2

:

ð3Þ

We propose to study these two couples of expressions, Eqs.
(2) and (3), in which the continuity effect is treated differ-
ently. The spatial and temporal correlations are computed
following the conventional definitions, respectively:

LðkÞij ¼
Z 1

0

RðkÞij dr and T �ij ¼
Z 1

0

R�ij ds ð4Þ
with

RðkÞij ðx; r; tÞ ¼
u0iðx; tÞu0jðxþ rek; tÞ
D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02i ðx; tÞh i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02j ðxþ rek; tÞ
� �q ;

R�ijðxpðtÞ; sÞ ¼
u0iðxpðtÞ; tÞu0jðxpðt þ sÞ; t þ sÞ
D E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02i ðxpðtÞ; tÞ
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02j ðxpðt þ sÞ; t þ sÞ
� �q ;

ð5Þ

where xp is the solid particle position and r is the separa-
tion between two points.

3. Channel flow DNS and solid particle tracking

3.1. Numerical parameters of the DNS computations

The DNS solver, second-order accurate in space and in
time (Orlandi, 2000), performs the simulation of a turbu-
lent channel flow at Reb ¼ 2800 (based on channel half-
width d and bulk velocity Ub) corresponding to a Reynolds
number based on the wall-shear velocity, Res, equals to
approximately 185. The subscripts 1, 2 and 3 refer to the
streamwise (x), wall-normal (y) and spanwise (z) directions,
respectively. Two different domain sizes are used for the
horizontal and downward vertical channel flows. Numeri-
cal parameters are summed up in Table 1. The superscript
ð�Þþ will denote hereafter quantities normalized with the
wall shear-velocity us ¼ 0:027 m s�1 and the kinematic vis-
cosity m ¼ 1:5� 10�5 m2 s�1. The channel flow being statis-
tically homogeneous in the streamwise and spanwise
directions, periodic boundary conditions are applied in
these directions. The time discretisation is semi-implicit,
i.e. the non-linear terms are written explicitly with the
third-order Runge–Kutta scheme and the viscous terms
are written implicitly using a Crank–Nicolson scheme. In
the wall-normal direction, the mesh is stretched according
to a hyperbolic tangent whereas a uniform mesh is applied
in the streamwise and spanwise directions.

3.2. Dispersed phase

The numerical simulation of solid particle trajectories is
restricted to spherical particles smaller than the dimension
of the smallest cell Dyþ ¼ 1 and consequently smaller than
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the smallest Kolmogorov length scale. The solid particle
volume fraction is assumed to be relatively small and par-
ticle–particle interactions are neglected. In addition, con-
sidering that the ratio between the particle and fluid
density obeys qp=q� 1, the particle equation of motion
can be written without taking the added mass, history
and spin induced lift forces into account. Consequently,
under these considerations and taking the gravitational
acceleration g into account, the equation governing the
motion of a solid particle is

dvi

dt
¼ ~ui � vi

sp

þ F L
i

mp

þ gi; ð6Þ

where F L
i represents the shear-induced lift force, mp is the

mass of a single particle, vi are the particle’s velocity com-
ponents, and ~uiðtÞ ¼ uiðxpðtÞ; tÞ are the fluid velocity com-
ponents interpolated at the solid particle’s location using
a 3D Hermite interpolation. The aerodynamic forces con-
sidered here are the non-linear drag and the shear-induced
lift force, both of them are corrected for near-wall effects
(Arcen et al., 2006). The particle relaxation time sp is ex-
pressed in terms of the drag coefficient CD and of the mag-
nitude of the relative velocity. The particle equation of
motion is time integrated using the third-order Runge–
Kutta scheme. The total number of particles is 640,000 in
the horizontal configuration whereas 300,000 are used in
the vertical one. Initially, particles are introduced with
the same velocity as the surrounding fluid. Statistics on
the dispersed phase were started after a time lag of approx-
imately tþ ¼ 600 in the horizontal case and of tþ ¼ 6000 in
the downward flow in order to get results independent of
the imposed initial conditions; these time lags being the
necessary time for particle statistics (with the exception of
the mean concentration) to reach a stationary state. Con-
cerning the smooth wall boundary conditions of the dis-
persed phase, perfectly elastic collisions are assumed.
Furthermore, as soon as particles moved out of the compu-
tational domain, they are re-introduced via periodic
boundary conditions. The numerical predictions of the
present code has been evaluated, in the frame of an interna-
tional test case, against the DNS-LS data issuing from the
computational codes of Marchioli et al. (2007). The com-
parison of the results issuing from these DNS-LS codes,
which are based on different numerical methods, has shown
the accuracy of the present code.

In order to distinguish the crossing trajectory and inertia
effects, the following dimensionless quantities have been
chosen to characterize the motion of the dispersed phase:
Table 2
Dispersed phase characteristics

Case dp ðlmÞ dp=d qp=q sþp sþp gþ

1 50 0.0005 2500 1.2 1
2 140 0.0014 4166 15.4 1
3 50 0.0005 2500 1.2 2
4 140 0.0014 4166 15.4 2
dþp (particle diameter), sþp [with sp defined in the Stokes
regime as sp ¼ ðqpd2

pÞ=ð18lÞ], and sþp gþ. In a quiescent
gas flow, spg is the terminal velocity of a solid particle.
The inertia effect is studied using two values of the particle
inertia, sþp ¼ 1:2 and 15:4. The effect of the gravity acceler-
ation is investigated by conducting simulations for two val-
ues of the gravity parameter, sþp gþ ¼ 1 or 2. The dispersed
characteristics are summed up in Table 2.
Fig. 1. Streamwise integral length scales Lð1Þij . (a) Lð1Þ11 . (b) Lð1Þ22 . (c) Lð1Þ33 . (—)
presents results; (O) Moser et al. (1999); (/) Iwamoto (2002); (h)
Kristoffersen and Andersson (1993).
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4. Assessment of spatial correlations

In order to apply Eqs. (2) and (3) in the horizontal and
downward vertical channel flows, the integral length scales
associated with a streamwise and wall-normal displacement
are necessary. We propose here to compare the results
obtained for these length scales issuing from our DNS
computation with the data given by Kristoffersen and
Andersson (1993); Moser et al. (1999) and Iwamoto
(2002). The length scales obtained from the streamwise
and wall-normal two-points velocity correlation functions
are noted Lð1Þij and Lð2Þij , respectively. Since the spatial corre-
lations in the streamwise direction are symmetric, the cor-
responding integral length scales are numerically estimated
by
Lð1Þij ¼
Z L1=2

0

Rð1Þij dr: ð7Þ
This is not the case in the wall-normal direction. Therefore,
we propose to distinguish two different integral length
scales by integrating Rð2Þij from a point located at y (at which
a

b

Fig. 2. Wall-normal integral length scales Lð2Þij . (a) Lð2�Þij . (b) Lð2þÞij . (—)
i ¼ j ¼ 1; (––) i ¼ j ¼ 2; (–�–) i ¼ j ¼ 3.
the spatial correlation has been calculated) to the upper or
lower wall, as

Lð2�Þij ¼
Z y

�d
Rð2Þij dr and Lð2þÞij ¼

Z d

y
Rð2Þij dr: ð8Þ

Results related to Lð1Þij and Lð2Þij are presented in Figs. 1 and 2
as a function of yþ (the bottom wall is located at yþ ¼ 0).
We observed that the streamwise length scales, Lð1Þ11 , Lð1Þ22

and Lð1Þ33 , issuing from our DNS as well as those deduced
from the spatial correlation data of Kristoffersen and
Andersson (1993) are slightly smaller than the length scales
obtained by Moser et al. (1999) and Iwamoto (2002), which
are in good accordance for yþ < 100. The wall-normal
length scales Lð2�Þij and Lð2þÞij are reported in Fig. 2(a) and
(b). We note the dissymmetric character of these length
scales since Lð2þÞij differs clearly from Lð2�Þij . In the near-wall
region, the values of Lð2þÞij are found to be higher than the
values of Lð2�Þij , whereas near the channel center, logically,
Lð2�Þij tend to Lð2þÞij . Moreover, as it can be seen from Figs.
1 and 2, the streamwise length scales are slightly higher
than those obtained in the wall-normal direction. The
a

b

Fig. 3. Mean relative velocity in a horizontal channel flow (bottom wall is
located at yþ ¼ 0): (a) streamwise V r;1; (b) wall-normal V r;2. sþp gþ ¼ 1: (—)
sþp ¼ 1:2; (–�–) sþp ¼ 15:4. sþp gþ ¼ 2: (––) sþp ¼ 1:2; (� � �) sþp ¼ 15:4.
Terminal velocity: (N) sþp gþ ¼ 1 and 2.
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values of all these length scales vary between 0 and 50 in
wall units, except Lð1Þ11 which can be of the order of the
channel half-width.
5. Prediction of the decorrelation time scales of the fluid seen

5.1. Test in a horizontal channel flow

In this configuration, the gravity vector is parallel to Ox2

and directed from the upper to the lower walls. Before to
present the comparison between results issuing from the
proposals, i.e. Eqs. (2) and (3), and the DNS results, we
propose to show the influence of the gravity on the mean
relative velocity. In Fig. 3, the mean relative velocity,
V r;i ¼ hvi � ~uii, is reported for several values of the particle
inertia sþp and of the dimensionless gravitational accelera-
tion parameter sþp gþ. Only statistics for which a significant
amount of data was collected are presented in this figure.
This explains the lack of results near the upper wall located
a b

c d

e f

Fig. 4. Decorrelation time scales of the fluid seen in a horizontal channel for
results; (—) Eq. (2); (––) Eq. (3).
at yþ � 370. From Fig. 3(b), it can be observed that the
mean relative velocity in the gravity direction (along Ox2)
is equal to the terminal velocity sþp gþ when the particle
inertia is low whereas for higher particle inertia, the mean
relative velocity is smaller. This difference is more pro-
nounced for the higher gravitational acceleration intensity
case in which the mean relative velocity can be found to
be 10% smaller than the terminal velocity. In Fig. 3(a)
related to the streamwise mean relative velocity, we can
observed that this component can be important for the
highest particle inertia. In the near-wall region, there is
an increase of the streamwise mean relative velocity which
is more important for the highest particle inertia. In the rest
of the channel, a zero value of this mean relative velocity is
noted for the lightest particles contrary to the heaviest par-
ticles case.

Therefore, the mean relative motion is inclined towards
the streamwise axis Ox1 and thus not strictly aligned with
the gravity direction. We have chosen to express Eqs. (2)
sþp gþ ¼ 1. (a, c and e): sþp ¼ 1:2. (b, d and f) sþp ¼ 15:4. (h) present DNS



a b

c d

e f

Fig. 5. Decorrelation time scales of the fluid seen in a horizontal channel for sþp gþ ¼ 2. (a, c and e): sþp ¼ 1:2. (b, d and f): sþp ¼ 15:4. (h) present DNS
results; (—) Eq. (2); (––) Eq. (3).
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and (3) in a reference system aligned with gravity. There-
fore, we implicitly consider that the influence of the cross-
ing trajectory effect on the decorrelation time scales of the
fluid seen is mainly due to the wall-normal mean relative
velocity. This choice was made since the absolute values
of V r;2 are greater than those of V r;1 almost everywhere
in the channel whatever the particle inertia and the values
of sþp gþ. Besides, the performance of Eqs. (2) and (3) to
predict the crossing trajectory and continuity effects will
be investigated for V r;2=hu022 i

1=2 2 ½1; 3	.
In Fig. 4 and also in Fig. 5, the ratios T �gii =T �ii are plotted

as a function of yþ for sþp gþ ¼ 1 and sþp gþ ¼ 2, respectively.
It has to be noted that the results for T �ii used in this study
can be found in Arcen et al. (2004). The first observation
that can be made is about the decrease of the decorrelation
time scales which is of the same order in the streamwise and
transverse directions and less important in the wall-normal
direction. This is in accordance with the findings of
Csanady (1963) who showed that the decrease of the time
scales of the fluid seen should be less important in the direc-
tion parallel to the mean relative velocity due to the conti-
nuity effect. Moreover, from the comparison with the
results obtained for sþp gþ ¼ 2 (see Fig. 5), it can be noticed
that an increase of the gravity acceleration induces a stron-
ger decrease in the decorrelation time scales of the fluid
seen. Concerning the inertia effect, it can be seen that what-
ever the values of sþp gþ, the influence of the particle inertia is
not significant on the ratio T �gii =T �ii, except may be in the
near wall region. However, this does not mean that T �gii

are independent of particle inertia. The results issuing from
Eqs. (2) and (3) are also plotted in these figures. It has to be
noted that the values of the length scales Lð2�Þii are used in
these latter expressions since the vertical motion of the par-
ticles is mainly directed from the upper wall towards the
bottom wall. A good accordance with the DNS results is
obtained for T �g22=T �22 and T �g33=T �33 when Eq. (3) is used. It



a

b

Fig. 6. Mean relative velocity in a downward vertical channel flow: (a)
streamwise; (b) wall-normal. sþp gþ ¼ 1: (—) sþp ¼ 1:2; (–�–) sþp ¼ 15:4.
sþp gþ ¼ 2: (––) sþp ¼ 1:2; (� � �) sþp ¼ 15:4. Terminal velocity: (N),
sþp gþ ¼ 1 and 2.
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should be also noticed that the results issuing from Eq. (3)
for T �g22=T �22 cannot be distinguished since they are identical
to those obtained from Eq. (2). Concerning the prediction
of T �g11=T �11, some discrepancies appear using Eq. (3) what-
ever the value of gravity acceleration, i.e. sþp gþ ¼ 1 and
sþp gþ ¼ 2. This can be explained by the fact that the crossing
trajectory effects in Eq. (3) is based on relation which is only
valid in isotropic turbulent flow. Better results are obtained
using Eq. (2) which are directly function of the longitudinal
or lateral length scales. Moreover, these expressions give
results in a very good accordance with those issuing from
DNS for all the components of the time scale of the fluid
seen and whatever the intensity of the gravity force. There-
fore, the crossing trajectory and the continuity effects can be
correctly predicted through the use of Eq. (2) in a large part
of the horizontal channel flow.

The disagreement between DNS results and those issu-
ing from Eq. (2) is seen to be significant close to the wall.
For yþ < 20, the DNS computation shows that the ratio
T �gii =T �ii increases and can be higher than unity whereas
the values predicted by Eq. (2) are lower than unity (see
Fig. 4). This trend is more pronounced for the heaviest
particle inertia sþp ¼ 15:4 and for the lowest value of the
dimensionless gravity acceleration, i.e. sþp gþ ¼ 1. It can
be observed that for this inertia T �g11=T �11 increases up to
1:3, whereas the maximum value of T �g33=T �33 and T �g22=T �22

is about 1.1. In other words, in this part of the channel,
the decrease of the correlation of the fluid fluctuating veloc-
ity along the particle trajectory is less rapid in the presence
of gravity than in its absence. A possible explanation is that
the range of the statistical properties of the turbulence
experienced by the particles is less important when the
gravity force is acting. Indeed, gravity prevents most of
the particles to move outside the near-wall region and thus
induces an increase of the particle residence time in this
zone. Moreover, it should be noted that the lift is also
responsible for the increase of the particle residence time
near the bottom wall since the gravity induces a large mean
streamwise relative velocity in a region of strong wall-nor-
mal gradient of the streamwise fluid velocity.

5.2. Test in a downward vertical channel flow

Before to present the results obtained using Eqs. (2) and
(3) in a downward vertical channel flow, the direction of
the mean relative motion has to be studied in order to
choose the appropriate length scales which will be used in
these expressions. The mean streamwise relative velocity
as well as the terminal velocity of a solid particle in a qui-
escent gas flow are plotted in Fig. 6(a) for two values of the
particle inertia and of the intensity of the gravity accelera-
tion. The mean relative velocity for the lightest particles is
identical to the terminal velocity whatever the intensity of
the gravity force whereas this is not the case for the highest
particle inertia. For these particles, there is a rapid increase
of the mean streamwise relative velocity at yþK 5. This
behavior has been already seen by Rouson and Eaton
(2001) in the same flow configuration. In the wall-normal
direction, see Fig. 6(b), the mean relative velocity is seen
to be small but not equal to zero for the heaviest particles
whatever the intensity of the gravity force, whereas the val-
ues obtained in the case of the lightest particle evolve
around zero, except in the near-wall region. Consequently,
the mean relative velocity vector is slightly inclined towards
the wall. Nevertheless, the value of V r;1 is found to be, at
the minimum, 10 times higher than the absolute value of
V r;2. This has leads us to consider that the mean relative
motion is mainly parallel to the streamwise direction.
Therefore, we have applied Eqs. (2) and (3) using the mean
relative streamwise velocity V r;1 in association with the
length scales Lð1Þii . The performance of Eqs. (2) and (3) to
predict the crossing trajectory and continuity effects will
be investigated for V r;1=hu021 i

1=2 2 ½0:5; 2:5	. The results
obtained for the decorrelation time scales of the fluid seen
in a downward vertical channel flow are presented in Fig. 7
and also in Fig. 8 for sþp gþ ¼ 1 and sþp gþ ¼ 2, respectively.
As observed in the horizontal channel flow configuration, a
decrease of the decorrelation time scales of the fluid seen is
noted and it appears more important in the direction
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Fig. 7. Decorrelation time scales of the fluid seen in a downward vertical channel flow for sþp gþ ¼ 1. (a, c and e): sþp ¼ 1:2. (b, d and f): sþp ¼ 15:4. (h)
present DNS results; (—) Eq. (2); (––) Eq. (3).
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parallel to the gravity whatever the particle inertia and the
intensity of the gravity force. Nevertheless, the difference in
the decrease of the time scales of the fluid seen in the direc-
tion parallel and perpendicular to the gravity is less pro-
nounced than in the horizontal channel flow. This is
probably due to the fact that, in contrary to the horizontal
channel flow configuration, the ratio T �ii=LðiÞii is not signifi-
cantly different to the one obtained in the perpendicular
directions to the mean relative velocity, i.e. T �jj=LðiÞjj . How-
ever, we note that for the highest values of the mean rela-
tive velocity, the decrease of the decorrelation time scales of
the fluid seen is more important. In comparison to the hor-
izontal case, the values of these time scales have similar
trends with respect to the intensity of the gravity force.

Furthermore, as observed in the horizontal channel flow
case, T �gii can be found to be higher than T �ii in the near wall
region. Nevertheless, this trend is observed whatever the
particle inertia and the intensity of gravity acceleration in
this flow configuration. As explained before, this effect
can be attributed to the fact that particles spend more time
in the wall region in the presence of the gravity. The
increase of the particle residence time in this part of the
channel is certainly due to the lift force which is directed
towards the wall. The effect of the lift force is more impor-
tant in the presence of gravity since it induces a mean
streamwise relative velocity which is larger than in its
absence.

Concerning the capability of the different models, Eqs.
(2) and (3), to predict the crossing trajectory and continuity
effects, we observe from Fig. 7 and also in Fig. 8, that the
decrease of T �g11=T �11 is well predicted by these two couples
of expressions whatever the particle inertia and the values
of sþp gþ in a large part of the channel flow. Nevertheless,
a better estimate is obtained for T �g22=T �22 when Eq. (2) is
used, since the decrease predicted by Eq. (3) is not enough
important. It is interesting to note that in opposite to the
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Fig. 8. Decorrelation time scales of the fluid seen in a downward vertical channel flow for sþp gþ ¼ 2. (a, c and e): sþp ¼ 1:2. (b, d and f): sþp ¼ 15:4. (h)
present DNS results; (—) Eq. (2); (––) Eq. (3).
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horizontal channel flow, Eq. (3) underestimates the influ-
ence of the crossing trajectory effect on the decorrelation
time scales of the fluid seen. As it can be seen, none of these
expressions seems to be able to predict accurately the
decrease of the time scale T �g33=T �33 in opposite to the results
obtained in a horizontal configuration. However, on the
whole, Eq. (2) yields better prediction.

6. Discussion and conclusion

DNS simulation of a cloud of solid particles in horizon-
tal and downward vertical channel flows clearly shows a
decrease of the decorrelation time scales of the fluid seen
which is more important in the directions perpendicular
to the mean relative velocity. The crossing trajectory and
continuity effects predicted for isotropic turbulence by
Yudine (1959) and Csanady (1963) are qualitatively identi-
cal to those observed in non-homogeneous turbulence. The
use of similar expressions to those proposed by Csanady
(1963) in order to model the influence of these two effects
on the decorrelation time scales of the fluid seen appears
to be possible.

Two couples of expressions derived from Csanady
(1963) that include the anisotropic character of the turbu-
lence, the inertia and continuity effects have been proposed.
The couple of expressions, Eq. (3), is quite close to the one
proposed by Csanady since the continuity effect is taken in
a similar way, i.e. the longitudinal length scale is considered
to be twice higher than the lateral length scales. The expres-
sions of the proposal, Eq. (2), are directly function of the
longitudinal or lateral length scales. The comparison
between the DNS results and those provided by these
expressions has revealed that Eq. (2) is able to successfully
model the decrease of the time scales of the fluid seen
except in the near-wall region. The prediction issuing from
Eq. (3) are less satisfactory since these expressions overes-
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timate the crossing trajectory effect in the horizontal chan-
nel flow and underestimate it in the downward vertical
channel flow configuration. In the near-wall region, none
of the proposed expressions give satisfactory results since
DNS results reveal an increase of the decorrelation time
scales of the fluid seen which can become higher than the
decorrelation time scales obtained in the absence of
gravity.

This study also shows that the use of a simple functional
form including good estimate of the parameters that enter
this functional expression is satisfactory. Nonetheless, the
major drawback of this new proposal is that it necessitates
to know beforehand the spatial two-points characteristics
of the turbulence and the decorrelation time scales of the
fluid seen when no external force is acting on particles.
Unfortunately, no models of these two latter characteristics
exist for non-homogeneous turbulence. Further studies of
these parameters are thus needed to improve the models
of the crossing trajectory and continuity effects in shear
flows.

Moreover, in contrary to the study of Csanady in an
homogeneous turbulence, the present DNS results show
that the mean relative velocity vector is not collinear with
the gravity acceleration vector. It has to be kept in mind
that in order to apply Csanady’s theory, the reference sys-
tem has to be chosen so that the mean relative motion is
aligned with one of its axes. This last condition could not
has been fulfilled in our case. Therefore, it has lead us to
assume that the mean relative motion in the horizontal
and downward channel flows is parallel to the gravity
direction and thus aligned with one of the axes of the ref-
erence system. However, the directions, namely g=kgk and
Vr=kVrk, have to be distinguished in real flows like in an
non-homogeneous flow. In the absence of any external
force, a separation of the average trajectories of the dis-
crete and of the fluid elements is observed due to particle
inertia effect and therefore, a mean relative velocity exists
(see the study by Arcen et al. (2004) in a channel flow). In
the presence of an external force field, the mean relative
velocity, induced by inertia effect, still exists. Nevertheless,
its magnitude can become more important due to the
external force (i.e. gravity). We think that the direction
of the mean relative velocity, with or without an external
force, is the most important one. Consequently, the cor-
rect approach would be thus to express our proposal in
a reference system aligned with Vr=kVrk and then to use
rotation matrices to change to an arbitrary reference sys-
tem. An improvement of the present work would be to
extend the formalism of the new proposal to a tensorial
form in order to predict the crossing trajectory effect inde-
pendently of the relative motion direction. A generaliza-
tion for the case where Vr has any orientation with
respect to the coordinate system has been already pro-
posed by Simonin et al. (1993) and Minier and Peirano
(2001) for isotropic turbulence. The main difficulty arising
from this approach is to define a tensorial form of the
length scales in a non-homogeneous flow. The extension
of the formalism to non-homogeneous turbulent flows
should be the next step of the present work.
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Arcen, B., Tanière, A., Oesterlé, B., 2004. Numerical investigation of the
directional dependance of integral time scales in gas–solid channel
flow. In: Proceedings of the Fifth International Conference on
Multiphase Flow, Paper No. 297, Yokohama, Japan.
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